Spike!  v1.0
A high speed Spiking Neural Network Simulator designed for GPGPUs.
Public Member Functions | Public Attributes
AdExSpikingNeurons Class Reference
Inheritance diagram for AdExSpikingNeurons:
SpikingNeurons Neurons

List of all members.

Public Member Functions

virtual int AddGroup (neuron_parameters_struct *group_params)
virtual void allocate_device_pointers (int maximum_axonal_delay_in_timesteps, bool high_fidelity_spike_storage)
virtual void copy_constants_to_device ()
virtual void reset_neuron_activities ()
virtual void update_membrane_potentials (float timestep, float current_time_in_seconds)
virtual void check_for_neuron_spikes (float current_time_in_seconds, float timestep)

Public Attributes

float * adaptation_values_w
float * membrane_capacitances_Cm
float * membrane_leakage_conductances_g0
float * leak_reversal_potentials_E_L
float * slope_factors_Delta_T
float * adaptation_coupling_coefficients_a
float * adaptation_time_constants_tau_w
float * adaptation_changes_b
float absolute_refractory_period
float background_current
float * d_adaptation_values_w
float * d_membrane_capacitances_Cm
float * d_membrane_leakage_conductances_g0
float * d_leak_reversal_potentials_E_L
float * d_slope_factors_Delta_T
float * d_adaptation_coupling_coefficients_a
float * d_adaptation_time_constants_tau_w
float * d_adaptation_changes_b

Member Function Documentation

virtual int AdExSpikingNeurons::AddGroup ( neuron_parameters_struct group_params) [virtual]

Determines the total number of neurons by which the simulation should increase. This is a virtual function to allow polymorphism in the methods of various SpikingNeuron implementations. Allocates memory as necessary for group size and indices storage.

Parameters:
group_paramsA neuron_parameters_struct instance describing a 2D neuron population size.
Returns:
The unique ID for the population which was requested for creation.

Reimplemented from SpikingNeurons.

virtual void AdExSpikingNeurons::allocate_device_pointers ( int  maximum_axonal_delay_in_timesteps,
bool  high_fidelity_spike_storage 
) [virtual]

Exclusively for the allocation of device memory. This class requires allocation of d_current_injections only.

Parameters:
maximum_axonal_delay_in_timestepsThe length (in timesteps) of the largest axonal delay in the simulation. Unused in this class.
high_fidelity_spike_storageA flag determining whether a bit mask based method is used to store spike times of neurons (ensure no spike transmission failure).

Reimplemented from SpikingNeurons.

Unused in this class. Allows copying of static data related to neuron dynamics to the device.

Reimplemented from SpikingNeurons.

virtual void AdExSpikingNeurons::reset_neuron_activities ( ) [virtual]

Resets any undesired device based data which is dynamically reassigned during a simulation. In this case, the current to be injected at the next time step.

Reimplemented from SpikingNeurons.


The documentation for this class was generated from the following file:
 All Classes Files Functions Variables Enumerations